Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means

and Applied Analysis 3 The following sharp lower power mean bounds for 1/3 G a, b 2/3 H a, b , 2/3 G a, b 1/3 H a, b , and P a, b can be found in 4, 6 : 1 3 G a, b 2 3 H a, b > M−2/3 a, b , 2 3 G a, b 1 3 H a, b > M−1/3 a, b , P a, b > Mlog 2/ logπ a, b 1.8 for all a, b > 0 with a/ b. The purpose of this paper is to answer the question: for α ∈ 0, 1 , what are the greatest value p and the least...

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

Optimal Convex Combination Bounds of Seiffert and Geometric Means for the Arithmetic Mean

We find the greatest value α and the least value β such that the double inequality αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with a = b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean

and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2010

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2010/108920